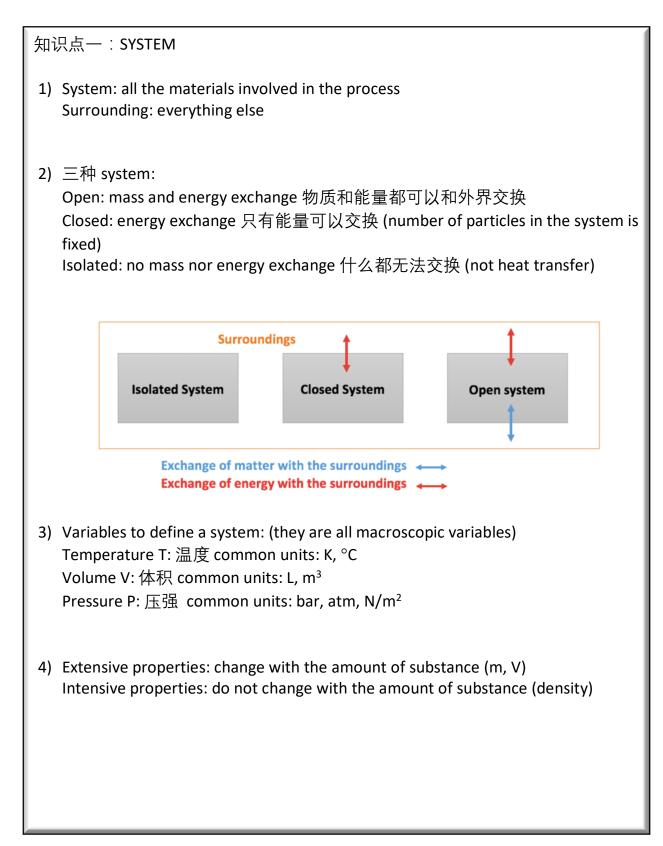
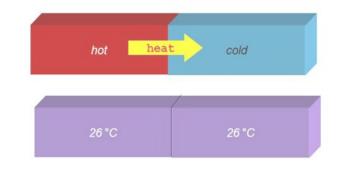
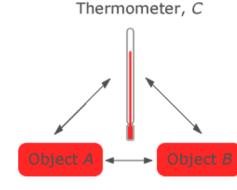


CHM220H:


Physical Chemistry for Life Sciences



Chapter 6. First Law of Thermodynamics



知识点一:SYSTEM

- 5) Thermal Equilibrium of two systems is when there is not net thermal exchange or no net macroscopic change:
 - 对于 isolated system: 不可能和另一个 system 形成 thermal equilibrium, 只能自己形成 thermal equilibrium.
 - 对于 open system and closed system: (energy exchange is allowed)当与外界 的温度相同时形成 thermal equilibrium.

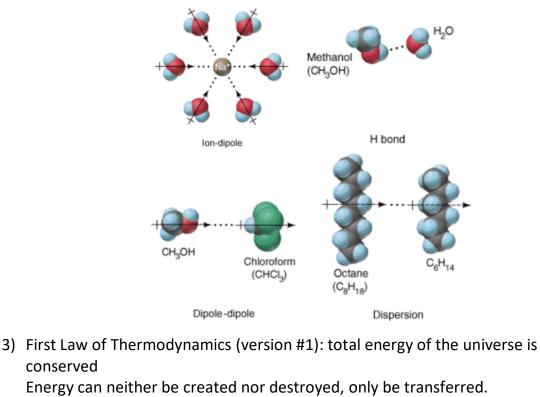
6) Zeroth law of thermodynamics: Two systems that are separately in thermal equilibrium with a third system are also in thermal equilibrium with one another A = B and B = C, then A = C
*Then the three systems all have the same temperature

知识点二:Ideal gas law

PV = nRT

- P: pressure in atm or Pa or N/m²
 V: volume in L n: moles
 R: ideal gas constant 0.08206 L atm mol⁻¹K⁻¹ or 8.314 J mol⁻¹K⁻¹
 T: temperature in Kelvin
- What does ideal means or the assumption of ideal gas law: non-interacting point particles (no attractive or repulsive forces between gas particles, and each gas particle does not occupy any volume)

 Pressure is inversely proportional to volume: Boyle's law 压强与体积成反比 Volume is directly proportional to temperature if P and n are kept constant: Charles' law 体积与温度成正比 Volume is directly proportional to number of particles at constant T and P: Avogadro's law 体积与粒子个数成正比


- 4) At standard T and P (273 K, 1 atm): 1 mole of gas particles has a volume of 22.4 L
- 5) Kelvin vs Celsius degree:
 T (K) = T (°C) + 273
 -273 °C: absolute zero, particles don't move at all

知识点三:Energy

- Macroscopic energy: Kinetic energy (KE): related to the motion of an object Potential energy (PE): gravitational potential energy, electrical potential energy, elastic potential energy...
- Microscopic energy: <u>Internal energy</u> (U), related to energy of molecules Microscopic kinetic energy: translation, vibration, rotation Microscopic potential energy: related to microscopic inter- and intramolecular force

Intramolecular force: covalent bonding, ionic bonding, metallic bonding

Intermolecular force: ionic interaction, dipole-dipole interaction, London force

 $dU_{total} = dU_{system} + dU_{surrounding} = 0$

知识点四:First Law of Thermodynamics

- 1) First Law of Thermodynamics (version #2): $\Delta U = q + w$ or dU = dq + dw
- 2) Internal energy is a state function (path independent). It only depends on the initial and final states.
 *remember the variables to define a state are (P, V, T) (P_i, V_i, T_i) → (P_f, V_f, T_f) refers to a path
- 3) For monoatomic ideal gas only: $U = rac{3}{2} nRT$ U depends on T only
- 4) Heat (q) and work (w) are not state functions (path dependent). For different process, heat and work could be different.
- 5) Quasi-Static Process: all macroscopic variables undergo infinitesimal change in the process
 - a) Irreversible process: $P_{ext} \neq P_{int}$
 - b) Reversible process: $P_{ext} = P_{int}$
 - c) Isothermal process: T is constant
 - d) Adiabatic process: no heat transfer
- 6) Work: (取决于 external pressure and change in volume) work done by the surrounding on the system is positive work done by the system on the surround is negative
 - a) $w = -P_{ext}\Delta V$ for irreversible process and constant P_{ext}
 - b) $w = -\int_{vi}^{vf} P(V) dV$ for reversible process, where P is expressed as a function of V
 - c) $w = -nRT \ln \frac{V^2}{V_1}$ for reversible isothermal process (T is constant) and for ideal gas only

Q: at constant V, $\Delta U = ?$

知识点四:First Law of Thermodynamics

- 1) Heat: $q = m\overline{C}\Delta T = C\Delta T$ Heat transfer into the system is positive: endothermic process Heat transfer out of the system is negative: exothermic process Note that **C** is the heat capacity (unit: J/K) \overline{C} is the specific heat capacity, heat capacity per mol or per gram (unit: J g⁻¹K⁻¹ or J mol⁻¹K⁻¹)
 - a) Heat Capacity: we either know the value of C (ex for water 4.184 J $g^{-1}K^{-1}$), or know the expression of C (ideal gas)
 - b) At constant volume (work = 0): Heat Capacity $C_V = \frac{q}{\Delta T} = \frac{\Delta U}{\Delta T}$ For monoatomic ideal gas only, $\Delta U = \frac{3}{2}nR\Delta T$, $C_V = \frac{3}{2}nR$
 - c) At constant pressure: Heat Capacity $C_P = \frac{q}{\Delta T} = \frac{\Delta H}{\Delta T}$
- 2) Enthalpy: H = U + PVEnthalpy is a state function

$$\Delta H = \Delta U + \Delta (PV) = \Delta U + P\Delta V + V\Delta P + \Delta P\Delta V$$

Thus at constant pressure $\Delta H = \Delta U + P\Delta V = q = Cp\Delta T$ For monoatomic ideal gas only: $H = \frac{5}{2}nRT$, $C_P = \frac{5}{2}nR$ For ideal gas, $\overline{C_P} - \overline{C_V} = R$

@Copyright 2021 Talent Education Inc. All Rights Reserved

Summary of heat capacity for gas:

- At constant volume: $q = \Delta U$, at constant pressure: $q = \Delta H$
- $\Delta U = C_V \Delta T \text{ and } \Delta H = C_P \Delta T$ -
- $C_V = \frac{3}{2}nR$, $C_P = \frac{5}{2}nR$ for monoatomic idea gas. For non-ideal gas of which Cv and Cp are constant, you will be given with the values.
- For non-ideal system, Cp is a function of T (not a constant), then at constant pressure $q = \Delta H = \int C_P(T) dT$. At constant volume $q = \Delta U = \int C_{\nu}(T) dT$ (you will be given the expression of Cp and Cv on the test)

Summary of Equations for ideal gas only:

1)
$$PV = nRT$$

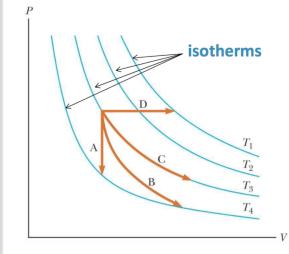
2) $w = -nRT \ln \frac{V^2}{V1}$ for reversible isothermal process
3) $\Delta U = \frac{3}{2}nR\Delta T$, $C_V = \frac{3}{2}nR$
4) $\Delta H = \frac{5}{2}nR\Delta T$, $C_P = \frac{5}{2}nR$
5) $\Delta U = \Delta H = 0$ for an isothermal process

- 1. A 7.24 g sample of ethane occupies 4.65 L at 294 K
 - a) Calculate the work done when the gas expands isothermally against a constant external pressure of 0.500 atm until its volume is 6.87 L
 - b) Calculate the work done if the same expansion occurs reversibly

2. An ideal gas is compressed isothermally by a force of 85 newtons acting through 0.24 meter. Calculate the values of ΔU and q.

3. An ideal gas is compressed isothermally from 2.0 atm and 2.0 L to 4.0 atm and 1.0 L. Calculate the values of $\Delta H, \Delta U$ if the process is carried out a) reversibly and b) irreversibly.

4. One mole of an ideal gas undergoes an isothermal expansion at 300k from 1.0 atm to a final pressure while performing 200 J of expansion work. Calculate the final pressure if the external pressure is 0.20 atm


5. A 10.0 g sheet of gold with a temperature of 18.0 celsius degree is laid flat on a sheet of iron that weighs 20.0 g and has a temperature of 55.6 celsius degree. Given that the specific heats of Au and Fe are 0.129 and 0.444 J g^{-1} °C⁻¹. What is the final temperature of the combined metals.

6. The constant-pressure molar heat capacity of nitrogen is given by the expression $\bar{C}_P = (27.0 + 5.90 \times 10^3 T - 0.34 \times 10^{-6} T^2) J K^{-1} mol^{-1}$ Find the value of ΔH for heating 1 mole of nitrogen from 25.0 celsius degree to 125 celsius degree 知识点四:First Law of Thermodynamics

PV diagram:

Plot of Pressure vs Volume: the curve represents a path, the area under the curve is equivalent to <u>work</u>

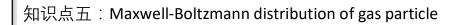
Adiabatic process vs Isothermal process
 Reversible process vs Irreversible process

- B: adiabatic (q=0)
- C: isothermal (constant T), notice that C is flatter than B

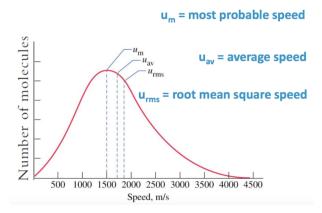
1.

Four identical samples of ideal gas are initially at T_1 , P_1 and V_1 .

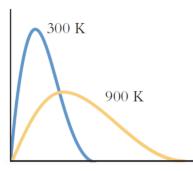
- Sample A is isothermally, reversibly compressed to V2
- Sample B is adiabatically, irreversibly compressed to V₂
- Sample C is adiabatically, reversibly compressed to V₂
- Sample D is cooled to T_2 , where $T_2 < T_1$, while also being compressed to V_2


Order the samples from lowest to highest final pressure.

2.


Four identical samples of ideal gas are initially at T_1 , P_1 and V_1 .

- Sample A is isothermally, irreversibly expanded to $V_2 > V_1$
- Sample B is isothermally, reversibly expanded to V₂
- Sample C is adiabatically, irreversibly expanded to V2
- Sample D is reversibly expanded to V_2 while being heated to $T_2 > T_1$.


Order each example from lowest to highest amount of heat transferred into the system (q)

Maxwell-Boltzmann distribution is the probability of finding gas particles (or number of particles) with certain speed (u) or kinetic energy (1/2mu²) The probability function is related to both temperature and mass of the particle Y-axis: number of particles, x-axis can be speed/internal energy ...

The curve looks different at different temperature

*At higher temperature: higher **probability** to find particles with higher kinetic energy

Important equation: The population of particles with energy U_i follows the equation

 $Ni = \frac{N Exp(-\frac{Ui}{K_B T})}{Q}$, $K_B = 1.4 \times 10^{-23}$ J/K is called Boltzmann constant; N is the total number of particles; Q is called partition function = $\sum e^{-U/K_B T}$

*Ratio of populations of two different energy levels:

 $N_2/N_1 = e^{-\Delta U/k_BT}$ where $\Delta U = U_2 - U_1$